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Computational reactive–diffusive 
modeling for stratification 
and prognosis determination 
of patients with breast cancer 
receiving Olaparib
Francesco Schettini 1,2,3,12*, Maria Valeria De Bonis 4,12, Carla Strina 5, Manuela Milani 5, 
Nicoletta Ziglioli 5, Sergio Aguggini 5, Ignazio Ciliberto 5, Carlo Azzini 5, Giuseppina Barbieri 5, 
Valeria Cervoni 5, Maria Rosa Cappelletti 5, Giuseppina Ferrero 6, Marco Ungari 6, 
Mariavittoria Locci 7, Ida Paris 8, Giovanni Scambia 8,9, Gianpaolo Ruocco 10,13 & 
Daniele Generali 5,11,13*

Mathematical models based on partial differential equations (PDEs) can be exploited to handle 
clinical data with space/time dimensions, e.g. tumor growth challenged by neoadjuvant therapy. A 
model based on simplified assessment of tumor malignancy and pharmacodynamics efficiency was 
exercised to discover new metrics of patient prognosis in the OLTRE trial. We tested in a 17-patients 
cohort affected by early-stage triple negative breast cancer (TNBC) treated with 3 weeks of olaparib, 
the capability of a PDEs-based reactive–diffusive model of tumor growth to efficiently predict the 
response to olaparib in terms of  SUVmax detected at 18FDG-PET/CT scan, by using specific terms 
to characterize tumor diffusion and proliferation. Computations were performed with COMSOL 
Multiphysics. Driving parameters governing the mathematical model were selected with Pearson’s 
correlations. Discrepancies between actual and computed  SUVmax values were assessed with Student’s 
t test and Wilcoxon rank sum test. The correlation between post-olaparib true and computed 
 SUVmax was assessed with Pearson’s r and Spearman’s rho. After defining the proper mathematical 
assumptions, the nominal drug efficiency (εPD) and tumor malignancy (rc) were computationally 
evaluated. The former parameter reflected the activity of olaparib on the tumor, while the latter 
represented the growth rate of metabolic activity as detected by  SUVmax. εPD was found to be 
directly dependent on basal tumor-infiltrating lymphocytes (TILs) and Ki67% and was detectable 
through proper linear regression functions according to TILs values, while rc was represented by the 
baseline Ki67-to-TILs ratio. Predicted post-olaparib SUV*max did not significantly differ from original 
post-olaparib  SUVmax in the overall, gBRCA-mutant and gBRCA-wild-type subpopulations (p > 0.05 
in all cases), showing strong positive correlation (r = 0.9 and rho = 0.9, p < 0.0001 both). A model of 
simplified tumor dynamics was exercised to effectively produce an upfront prediction of efficacy of 
3-week neoadjuvant olaparib in terms of  SUVmax. Prospective evaluation in independent cohorts and 
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correlation of these outcomes with more recognized efficacy endpoints is now warranted for model 
confirmation and tailoring of escalated/de-escalated therapeutic strategies for early-TNBC patients.

Abbreviations
BC  Breast cancer
CAFs  Cancer-associated fibroblasts
CI  Confidence interval
CP  Challenged proliferation
CT  Chemotherapy
ECM  Extra-cellular matrix
ESMO  European society for medical oncology
εPD  Nominal personalized drug efficiency
FP  Free proliferation
gBRCA   Germline BRCA1/2
PDEs  Partial differential equations
NAT  Neoadjuvant therapy
PARP inhibitor  PARPi
PD  Pharmacodynamics
PK  Pharmacokinetic
ROI  Region of interest
SD/PD  Stable disease/progressive disease
SUVmax  Maximum standard uptake value
SUVmax*  Predicted  SUVmax values in silico
t  Time
ti  Indefinite timepoint
t0  Baseline timepoint
TILs  Tumor-infiltrating lymphocytes
TNBC  Triple negative breast cancer

Breast cancer (BC) is the most common cancer in women and the most frequent cause of death by cancer in 
this  sex1. Fortunately, in the last decades, new and escalated treatment strategies in early-stage disease have led 
to a substantial reduction in recurrence rates and improvements in  survival2,3. However, treatment costs and 
toxicities have also increased  substantially4,5. This has led to focus new research efforts in better personalizing 
therapeutic approaches, so to spare unnecessary toxicities and optimize BC care costs, as also advocated by the 
European society for medical oncology (ESMO) and the broader scientific community in recent  years6–8. In this 
perspective, the development of tools capable of predicting tumor progression and response to novel therapies 
might help implementing therapeutic personalization and better identifying patients that might be spared long-
term chemotherapy.

In the last few years, mathematical modeling has been entering the arena of oncological research in an 
attempt to predict spatial and temporal evolution of tumors transferring in-silico models to clinical research and 
 practice9,10. Gompertzian and logistic mathematical models were first used to represent tumor cells’ growth and 
invasiveness and have been successively adopted in more sophisticated and complex models for tumor prolifera-
tion  studies11,12. Accumulating evidence is showing that mathematical models based on partial differential equa-
tions (PDEs) are potentially exploitable to handle clinical data with spatial dimensions not solely depending on 
time; which is, for example, the case of tumor growth challenged by neoadjuvant therapy (NAT)9,13–15. The PDE 
approach based on reaction–diffusion models is often employed for cancer modeling. These models define the 
diffusion and proliferation of the various tumor components, including cancer cells, healthy cells, extracellular 
matrix etc. with specific mathematical  formulas16. In this perspective, we preliminarily showed in a restricted 
cohort of 3 BC patients undergoing NAT, that a computational mass transfer modeling based on a set of PDEs 
applied at the tumor dynamics might represent a powerful in silico tool to virtualize tumor progression and 
predict tumor dynamics in response to therapy at the single-patient  level17.

We hereby retrospectively applied our reactive–diffusive PDEs-based model to a wider BC patient cohort 
prospectively enrolled in a window-of-opportunity trial at our  Institution18, to further test whether the com-
bination of personalized diagnostic imaging and clinicopathological tumor/patient variables in mathematical 
modeling can accurately predict early-stage BC progression and its competition with a suitable NAT for a better 
patient-adapted planification of the therapeutic strategy.

Methods
Study population. This analysis was retrospectively performed on the BC patients enrolled within the 
OLTRE “window of opportunity” trial (NCT02681562) with available data for the mathematical modeling. 
Within the OLTRE study, conducted at the ASST Cremona between 2016 and 2019, treatment-naïve patients 
with locally advanced non-metastatic HER2-negative BC, with or without a germline BRCA1/2 (gBRCA) muta-
tion, received the PARP inhibitor (PARPi) olaparib at a dose of 300 mg orally for 21 consecutive days, before 
starting the standard neoadjuvant chemotherapy (CT)18. The main objective of the trial was to explore the bio-
logical effects of a short course of olaparib, especially in locally advanced triple negative BC (TNBC) indepen-
dently of the gBRCA status.
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All patients underwent a 18FDG-PET/CT scan at baseline and after 3 weeks of olaparib ± 3 days; and clinical 
assessments were conducted at baseline and every 3 weeks ± 3 days. Clinical responses were evaluated through 
physical exam with caliper and assessed according to RECIST1.1 criteria 18,19. The same operator performed all 
physical examinations pre/post olaparib to identify clinical responders (complete response + partial response 
[CR/PR]) and non-responders (stable disease + progressive disease [SD/PD]). 18FDG-PET/CT was used to detect 
radiometabolic responsiveness to olaparib by taking into account baseline and post-olaparib maximum standard 
uptake value  (SUVmax) values for the primary lesion. The same radiologist evaluated all PET/CT responses. Full 
study details are reported  elsewhere18. Only TNBC patients were included in the present analysis.

Study hypotheses and objectives. The main hypothesis behind this sub-analysis of the OLTRE trial 
was to test an in-silico reactive-diffuse model based on PDEs to predict the BC metabolic response to NAT 
with olaparib alone, as detected by 18FDG-PET/CT in terms of  SUVmax after 3 weeks of neoadjuvant olaparib. 
To differentiate between actual and predicted  SUVmax values in silico, we will refer to the latter as SUV*max. As a 
consequence, for the purpose of the present study, tumor dimensional assessments were not considered for the 
development of our mathematical model.

Study procedures: theoretical premises. From the engineering point of view, BC is a single-phase 
(solid) biomaterial, featuring sharp boundaries delineating the cancer cells population Øc, that grows and 
invades a region of interest (ROI)10. During NAT, a given mass rate of olaparib Ød was administered. When Øc 
represents an index of metabolic activity, its integration in the ROI can be compared with the measurement of 
 SUVmax by 18FDG-PET/CT and a Gompertzian logistic function can be employed to describe its change rate, as 
reported in equation Eq. (1), as we and others preliminarily  demonstrated11,20–22.

In the equation, rc represents the nominal personalized biological conversion rate depending on the nanoscale 
(genomics) and the microscale (cell signals/molecular biology), such as BC invasiveness, aggressiveness or 
malignancy. In our analysis, rc reflects the growth rate of metabolic activity as detected by  SUVmax, surrogate of 
BC malignancy. The 1/rc is a timescale constant, representing the growth rate of Øc. The variable t stands for time, 
while the parameter K is an arbitrary constant representing a surrogate of the carrying capacity of the biological 
matrix. Namely, the limiting nutrients for the onset of the metabolic conversion in the confined space where the 
BC lesion is detected. The value of K is taken such that the sigmoid function described by Eq. (1) approaches 
its future asymptote very gradually. Following the Gompertzian function reported in Eq. (1), the tumor growth 
dynamics can be subdivided into three phases, represented in Fig. 1A. A Phase I of free tumor proliferation (FP), 

(1)
dφc

dt
= −rcφc ln

(

φc

K

)

Figure 1.  Key methodological steps of the mathematical model. (A): Gompertzian curve representing tumor 
metabolic activity in terms of  SUVmax in different cancer growth phases; (B): Pearson’s correlations among 
 SUVmax modifications under olaparib and baseline clinicopathological parameters of interest. (C): Nominal 
personalized olaparib efficiency εPD versus nominal personalized breast cancer malignancy rc; t, time; delta, 
variation; i, initial; FP, free tumor proliferation phase (Phase I); CP, challenged tumor proliferation phase 
(Phase II); T, primary tumor size; TPS, tumor proportion score; IC, immune cells; TILs, tumor-infiltrating 
lymphocytes; SUV, standard uptake value. In panel B grey numbers are Pearsons’ coefficients. The more positive 
the correlations, the darker the blue circles, while the more negative the correlations, the darker the red circles. 
The peripheral red circles identify non-significant correlations.
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when the lesion starts growing from an unknown time (ti) in the past, until it is first diagnosed at time 0 (t0). The 
following Phase II is also called challenged proliferation (CP), representing the time when a drug is administered 
and, if effective, impairs tumor growth/metabolic activity. Usually, a phase III of further tumor growth/increase 
in metabolic activity is observed anytime a treatment is ceased or resistance is developed. Surgical resection or 
a treatment change interrupts this phase. Since we aimed at predicting the tumor metabolic activity as detected 
by 18FDG-PET/CT in terms of  SUVmax after 3-week neoadjuvant olaparib alone, we considered as t0 the time of 
baseline  SUVmax detection.

Governing equations and model assumptions. Two PDEs for reaction–diffusion were used in our 
mathematic model, represented by Eqs. (2) and (3)20.

Equation (2) represents the tumoral biomass transport, in terms of dimensionless metabolic activity indica-
tor, while Eq. (3) the drug transport, in terms of olaparib concentration. The source terms Rc and Rd are defined 
by the following equations:

Importantly, the following assumptions were taken: (1) the physical and functional lag consisting in multiple 
compartments mediating drug delivery to the tumor lesion was not taken into account, since the effect of mediat-
ing compartments would be approximately the same for each single patient and the study had an overall a short 
time span (3 weeks of olaparib administration)23; (2) a detailed action of the extra-cellular matrix (ECM) was not 
considered in this model. However, the crosstalk between cancer-associated fibroblasts (CAFs) and tumor cells 
was taken into account in the bulk effect of the effective diffusion coefficient of tumoral biomass, Dc in Eq. (2)24,25; 
(3) Dd in Eq. (3) represented the diffusion coefficients for the drug, i.e. olaparib. For simplicity, we considered 
the same D values for all patients enrolled into the study (i.e. Dc =  1e−13  m2/s; Dd =  1e−5  m2/s)26.

Moreover, to fully understand the above-mentioned equations, the following definitions were adopted:

• εPD: nominal drug efficiency, or aggregated personalized pharmacodynamic (PD) behavior of the drug (i.e. 
olaparib). It represents the effect of the drug on the tumor in terms of either tumor shrinkage or, in this study, 
 SUVmax reduction;

• f(t): the indicator of therapy regimen for the administered drug, equal to 1 during the entire neoadjuvant 
treatment duration. Therefore, the drug concentration in the patient blood was assumed to be constant;

• εPK: the known effect of the clearance, or pharmacokinetic (PK) behavior for the administered olaparib, 
based on the available drug specifications (i.e. olaparib nominal plasma clearance: 7 l/h27,28). In other words, 
εPK brings purposely the PK effect into the PDE representing the distribution of drug concentration. To this 
end, the drug’s nominal plasma clearance (converted in  m3/s) must be multiplied for the patient’s nominal 
density (in kg/m3, conventionally assumed equal to water) then divided for the patient’s mass (in kg), in 
order to obtain εPK’s desired unit of 1/s, to reach unit consistency in the PDE. This parameter is essential to 
calculate Rd, as previously reported.

Due to the integration of the PDEs system described by Eqs. (2) and (3), the Øc and Ød evolve in space and 
time. The space integration is performed in the available breast volume, while the variables progress over time 
(t), starting from the in-silico starting time of BC lesion (ti) to the end of olaparib NAT.

Study procedures: analysis. The system of equations applied to the available breast volume, Eqs. (2–3), 
supplemented by source term Rc and Rd definitions equations, along with their initial and boundary conditions 
previously described, were integrated with the Finite Element Method, by using the COMSOL Multiphysics 
 platform29. An unstructured meshing technique was used, yielding for a homogeneous tetrahedral element grid. 
After a grid independency test, a final mesh of approximately 10.000 elements was employed, to optimize result 
accuracy and computational  times17. Direct solver PARDISO was employed as the algebraic engine, while the 
BDF method was applied for the temporal  dependence17. Execution durations, for each patient, did not exceed 
30 min on a Pentium® Xeon server (Windows® 10 [Microsoft, Redmont, WA, USA], Eightcore-32N at 2.4 GHz, 
128 GB RAM) running in serial mode.

Population characteristics were assessed through standard descriptive statistics and variations in mean for 
main pathological variables pre/post olaparib were assessed through Students’ t-test for paired samples. The 
correlation of the main clinicopathological features (i.e. Ki67%, tumor-infiltrating lymphocytes [TILs] %, age 
in years, tumor size in mm, PD-L1 TPS and IC %) with the difference between post- and pre-olaparib  SUVmax 
values, were used to identify the parameters better correlating with tumor malignancy rc to provide the neces-
sary estimations within the mathematical model. Finally, the post-olaparib  SUVmax and SUV*max were compared 
with both parametric (unpaired Student’s t-test) and non-parametric (Wilcoxon rank sum test) tests to assess the 

(2)
∂φc

∂t
= ∇ · [Dc∇φc]+ Rc

(3)
∂φd

∂t
= ∇ · [Dd∇φd]+ Rd

Rc = −rcφc ln

(

φc

K

)

− ǫPDφd

Rd = f (t)− ǫPKφd
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global mean/median difference between the actual and predicted parameter of interest. The correlation between 
true and computed post-olaparib SUV*max values was assessed with Pearson’s r and Spearman’s rho. Significance 
was set at p < 0.05. R vers. 3.6.1 for MacOSX was used for statistical analysis.

Ethical approval. The OLTRE trial (NCT02681562) was conducted in accordance with the Declaration of 
Helsinki, the Good Clinical Practice principles and all local regulations. The study obtained the approval of the 
ethical committee of the ASST of Cremona Hospital (IRB Approval 09/09/2015 n.21741/2015) and all partici-
pants provided written informed consent for participation.

Results
The population of the OLTRE trial has been already described  elsewhere18. For the purpose of the present 
study, 17/35 patients presented all the sufficient data to be included (i.e. all pre/post  SUVmax values and baseline 
clinicopathological features). All selected patients were affected by locally advanced TNBC, with 5 (29.4%) 
carrying a gBRCA mutation, while the remaining 12 (70.6%) were gBRCA-wild type. Main population features 
are reported in Table 1. All patients underwent 3 weeks of olaparib according to study protocol and obtained a 
significant reduction in tumor dimension (mean of the difference in lesion mm: 10.21, 95% confidence interval 
[CI]: 5.00–15–42, p < 0.001) and metabolic activity (mean of the difference in  SUVmax: 4.33, 95% CI 1.54–7.12, 
p = 0.004). We retrospectively applied our computational reactive–diffusive modeling approach on this subset 

Table 1.  Patients demographics. SD standard deviation, TILs tumor-infiltrating lymphocytes, T maximum 
diameter of the primary tumor as measured by calliper, SUV standard uptake volume, PD-L1 TPS PD-L1 
positivity assessed according to the tumor proportion  score16, PD-L1 IC PD-L1 positivity assessed on immune 
 cells16, gBRCA  germline BRCA1/2. *p values from Students’ t-tests for paired samples.

CHARACTERISTICS

BASELINE
POST-
OLAPARIB

p*

N % N %

17 100.0 17 100.0

Age (years)

 Mean 61.4 – – –

– SD ± – – –

 Total 17 100.0 – –

Ki67 (%)

 mean 51 – 52 –

0.437 SD ± 25.7 – ± 27.9 –

 Total 17 100.0 16 94.1

TILs (%)

 mean 54.7 – 54.3 –

0.577 SD ± 36.1 – ± 34.6 –

 Total 17 100.0 14 82.4

T (mm)

 mean 40.1 – 29.4 –

< 0.001 SD ± 16.8 – ± 15.0 –

 Total 17 – 17 –

SUVmax

 mean 8.6 – 4.2 –

0.004 SD ± 5.1 – ± 2.5 –

 Total 17 100.0 17 100.0

PD-L1 TPS

 Positive 9 52.9 5 55.6

0.572 Negative 8 47.1 4 44.4

 Total 17 100.0 9 52.9

PD-L1 IC

 Positive 11 64.7 8 88.9

0.570 Negative 6 35.3 1 11.1

 Total 17 100.0 9 52.9

gBRCA 

 Mutant 5 29.4 – –

 Wild-type 12 70.6 – –

 Total 17 100.0 – –
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of 17 patients to predict  SUVmax response. An inspection on the analytical structure of the model revealed that, 
once applied the known f(t) and εPK for the specific patient, the progress in the FP phase (Fig. 1A) depended 
on the previously mentioned ti and rc parameters. Therefore, we firstly performed multiple Pearson correlation 
analyses to identify the clinicopathological factors potentially associated with  SUVmax modifications. We noted the 
 SUVmax reduction obtained with olaparib was significantly inversely correlated with baseline Ki67 and TILs levels 
(r = − 0.75 and r = − 0.74 , respectively, p < 0.001 both) only (Fig. 1B). Hence, tumor malignancy, identified with the 
parameter rc (i.e.  SUVmax growth rate) was subsequently defined as Ki67/TILs ratio. This mathematical definition 
was based on the evidences showing in early-stage TNBC that higher values were associated with better survival 
 outcomes30–32. We normalized Ki67 and TILs values in order to obtain a value range comprised between 0 and 
1. Then, the lesion starting time ti was tweaked in each case to closely match each measured baseline  SUVmax, at 
the end of the FP phase. Next, for each single patient the models were iteratively run by manually-adjusting the 
nominal personalized olaparib efficiency (εPD) in order to come up, in the subsequent CP phase, with minimal 
relative deviations in the computed post-olaparib SUV*max volumes, with respect to the corresponding actual 
post-olaparib  SUVmax measurements. Results are summarized in Table 2.

At this point, we had a very good reproduction of each clinical case, but no actual potential of prospective 
evaluation, yet. We then plotted εPD against rc (i.e. Ki67/TILs ratio) discovering that two sub-cohorts appeared 
neatly depending on the range of normalized TILs level (Fig. 1C). The patient normalized Ki67 and TILs values 
could be grouped along two different interpolating curves based on the following functions:

(1) for TILs level below the value of 0.5: εPD = 0.1227 · rc
1.5184, with  R2 = 0.9277

(2) for TILs level above the value of 0.5: εPD = 0.004 · rc
2 + 0.0105 · rc + 0.0252, with  R2 = 0.9448

Hence, with εPD expressed with the above dependences, all of the driving parameters in Eqs. (2–3) were 
identified, and the model could be solved in a full prospective mode, with its solution depending on the available 
baseline  SUVmax and baseline Ki67 and TILs levels. Consequently, in a second computational stage the models 
were iteratively run again, by keeping the same optimized values for ti and rc reported in Table 1. The computed 
SUV*max, along with the relative deviations with respect to the corresponding true SUV max measured by PET, 
are listed in Table 3.

The prediction quality was adequate, with computed post-olaparib SUV*max differing of < 1 unit with respect 
to the actual post-olaparib  SUVmax for 12 (70.6%) patients and in the range of 1–2 units for the remaining 
5 (29.4%), independently from gBRCA status. The correlation between post-olaparib  SUVmax and computed 
SUV*max was positive and very high, according to parametric and non-parametric methods, as well (Pearson’s 
r = 0.95, p < 0.0001, Spearman’s rho = 0.93, p < 0.0001). Importantly, the numerical difference between post-
olaparib  SUVmax and SUV*max was not statistically significant by using both parametric (p = 0.813, p = 0.866 and 
p = 0.856) and non-parametric (p = 0.945, p = 0.841 and p = 0.977) statistics for the overall, gBRCA-mutant and 
gBRCA-wild-type populations, respectively.

Finally, we exercised the model in a virtual scenario of different pharmacodynamic efficiency (εPD) and 
olaparib duration, for a randomly selected patient of our cohort (patient n.13), with the objective of bringing 

Table 2.  Detailed values of the driving parameters of the mathematical model, with clinical and computed 
 SUVmax. ti, lesion starting time; rc, biological conversion rate. In this case each  rc is the results of Ki67/TILs; 
εPD, olaparib efficiency (effect of the drug on the body);  SUVmax, actual maximum standard uptake volume 
measured by 18FDG-PET/CT; SUV*max, maximum standard uptake volume calculated by the computational 
model.

Patient ti rc εPD Baseline  SUVmax Post-olaparib  SUVmax Baseline SUV*max Post-olaparib SUV*max

1 814 3.33E−08 1.90E−02 6.5 3.7 6.51 3.7

2 202 1.50E−07 6.20E−03 3.8 4.8 3.8 4.79

3 43 7.50E−07 1.73E−01 6 2.1 6.16 2.08

4 108 3.00E−07 4.00E−02 10.3 9.6 10.46 9.63

5 180 1.80E−07 3.40E−02 6 4.3 6.08 4.34

6 590 5.00E−08 6.20E−02 11.6 2.9 11.61 2.89

7 252 1.25E−07 2.20E−02 9.8 7.9 9.74 7.8

8 80 4.00E−07 2.60E−02 1.9 2.9 1.92 2.91

9 2147 1.11E−08 4.00E−03 8 6.5 8.12 6.5

10 326 8.89E−08 6.40E−02 3.8 1 3.84 0.99

11 312 1.00E−07 9.50E−02 9.3 1.5 9.3 1.49

12 291 1.00E−07 1.40E−02 3.5 3 3.48 3.04

13 353 8.89E−08 1.15E−01 12.9 1.3 12.96 1.28

14 106 3.00E−07 4.20E−02 7.3 6.3 7.19 6.38

15 357 8.89E−08 1.10E−01 21.9 2.7 21.74 2.69

16 208 1.50E−07 1.30E−02 6.5 6.8 6.51 6.87

17 461 6.67E−08 1.05E−01 17 3.5 16.98 3.46
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out the non-linear relationship between the predicted outcome (SUV*max) and time. As observable in Fig. 2, the 
progress of the tumor computed SUV*max for patient n.13 was compared, with the variable values leading to the 
results reported in Table 3 (Case A), to a virtual case represented by the same patient with a 20% decrement of 
εPD and an increase in 6 days of olaparib duration (Case B).

We observed that in case of variation of both response to NAT and NAT duration, it was again possible to 
achieve the same quantitative reduction in predicted  SUVmax (i.e. SUV*max = 1.72) by stretching the NAT duration 
(Fig. 2). Such results were obtained by executing the model iteratively, until the same original volume of Case A 
was achieved. It is confirmed therefore the results obtainable from the proposed model, through its non-trivial 
solution, are strongly intertwined and non-linear in nature, and the model presents the flexibility and adaptability 
to potentially tailor in silico an entire therapeutic strategy at the patient level.

Table 3.  Values of εPD for each patient, with related SUV*max and their absolute deviations with respect to 
the clinical measurements of post-olaparib  SUVmax. SUV*max, predicted  SUVmax values; εPD, olaparib efficiency 
(effect of the drug on the body); SUV, standard uptake volume.

Patient εPD SUV*max Post SUVmax Post-SUV*max Post

1 2.31E−02 3.28 0.42

2 1.85E−02 3.71 1.09

3 1.71E−01 2.13 0.03

4 2.97E−02 11.53 1.93

5 1.91E−02 6.27 1.97

6 4.28E−02 4.5 1.6

7 1.83E−02 8.46 0.56

8 4.72E−02 2.01 0.89

9 4.36E−03 6.37 0.13

10 1.03E−01 0.33 0.67

11 1.23E−01 0.75 0.75

12 1.87E−02 2.83 0.17

13 1.03E−01 1.72 0.42

14 2.97E−02 7.92 1.62

15 1.03E−01 3.08 0.38

16 1.85E−02 6.36 0.44

17 6.63E−02 3.39 0.11

Figure 2.  Virtual scenario of different pharmacodynamic efficiency and olaparib duration. Computed SUV*max 
progressing with time for a real and a fictious case, having a different nominal personalized olaparib efficiency 
εPD and a different NAT duration. The progress is reported limited to Phase II of challenged proliferation. Case 
A: results from patient n.13 of our cohort; Case B: virtual case of patient n.13 with 20% decrement of εPD and a 
total NAT duration of 27 days instead of 21; t, time; d, days.
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Discussion
We tested, in a cohort of 17 patients affected by early-stage TNBC treated with 3 weeks of olaparib in a “window 
of opportunity” trial, a mass transfer PDEs-based reactive–diffusive mathematical model of tumor growth which 
might be capable of efficiently predicting the response to olaparib in terms of  SUVmax detected at 18FDG-PET/
CT scan.

The model showed, without any preliminary assumption, the effective pharmacodynamic efficiency of olaparib 
was strongly dependent on basal TILs level and  SUVmax growth rate. The latter was represented by a mathemati-
cal parameter that in our case was directly dependent on Ki67 expression and TILs count. By knowing the basal 
 SUVmax, Ki67% and TILs levels it would be possible with this approach to predict with a very small margin of 
error the  SUVmax change after 3 weeks of olaparib. Although, this is not standard of care, it opens up to the pos-
sibility of early-detecting a drug efficacy (olaparib in this case) and investigating the personalization of escalated 
or de-escalated therapeutic strategies in early-stage TNBC in future research.

The need for biomarkers to guide escalated/de-escalated and more personalized therapeutic approaches is 
a hot topic in current  Oncology33,34. Moreover, TNBC are historically a subgroup of breast tumors with poor 
prognosis and lack of biomarkers for effective personalized therapeutic  approaches35,36. The most notable and very 
recent (for their therapeutic implications) exceptions are the determination of gBRCA status, in both adjuvant 
and metastatic setting, to decide whether or not to prescribe PARPi and the assessment of PD-L1 levels/positiv-
ity for the prescription of  1st-line immunotherapy + chemotherapy in metastatic  disease37–39. However, the main 
issues with biomarker discovery research include: (1) higher difficulty related to lack of funding or difficult access 
to data from clinical trials, (2) regulators are less prone/used to approve prognostic and predictive biomarkers 
than novel therapeutic options, (3) the high number of false discoveries, (4) lack of reproducibility or complex/
inviable implementation in clinical  practice40–42. This translates into a slow and defective transfer of knowledge 
from the laboratory to the clinical research and/or practice scenario.

Noteworthy, the evaluation of Ki67 is an already established prognostic biomarker in BC, which expression 
is strongly associated to tumor proliferation and  growth43. Higher levels are usually associated to higher tumor 
aggressiveness and worse prognosis, although in TNBC there is no established cut-off to define high vs. low 
Ki67 levels, differently from hormone receptor-positive  BC35,43,44. Nevertheless, a recent meta-analysis of 35 
independent studies (~ 8000 patients with resected TNBC) suggested that a cut-off of 40% would be associated 
with higher recurrence risk and  mortality45.

The morphological evaluation of TILs in BC has gained attention in the last few years, when preliminary evi-
dences started to show a potential prognostic and predictive role, especially in TNBC and HER2-positive  BC46. A 
recent retrospective analysis on more than 2000 patients showed a clear favorable prognostic role for higher TILs 
levels (≥ 30%) in early-stage TNBC, independently from main clinicopathological  factors30. This evidence adds 
to the strong independent prognostic role showed by TILs in residual disease after neoadjuvant  chemotherapy47 
and a retrospective analysis where higher TILs were found to be independently associated to multiple survival 
endpoints in patients from an old cohort not treated with (neo)adjuvant chemotherapy. In the same study, stage 
I tumors with TILs ≥ 30% showed a 5-year overall survival of 98%48. These evidences assure our mathematical 
model was built on biologically and clinically meaningful parameters. Furthermore, our model might be a pow-
erful tool for the personalization of BC care not necessarily requiring the detection of novel costly biomarkers.

There are several limitations that will have to be overcome to promote the implementation of this mathemati-
cal framework in the clinical research and practice scenarios. First of all, we had the possibility to study our 
mathematical model in a cohort of 17 patients, which is more than what is usually done in this research field, 
where modelling frameworks based on single patients are the  norm13,17,21. However, wider cohorts are required 
to validate our findings. Secondly, olaparib is still not approved in the neoadjuvant setting, nor in gBRCA-wild 
type TNBC. Nevertheless, PARPi showed activity and efficacy in several solid tumors also beyond gBRCA muta-
tional  status38 and the model performed quite well in both gBRCA-wild-type and mutant patients. Moreover, 
another PARPi, namely talazoparib, already showed promising neoadjuvant efficacy in gBRCA-mutant  TNBC49 
and the same olaparib is currently under evaluation in a phase II study in monotherapy or in combination 
with the immune-checkpoint inhibitor durvalumab in early-stage HER2-negative BC with either a germline 
or somatic BRCA1/2 mutations (OlimpiaN, ClinicalTrials.gov identifier: NCT05498155). In addition, also the 
PARPi niraparib recently showed in a pilot study, a high tumor response (90.5%) on MRI along with high pCR 
rate (40.0%) in gBRCA-mutant HER2-negative breast cancer patients who received it as monotherapy in the 
neoadjuvant  setting50. This means that PARPi have the potential to become a neoadjuvant therapeutic option 
for TNBC in the next future and the mathematical model hereby tested might be envisioned as an in silico pre-
dictor of response for further upfront implementation of escalated (e.g. the addition of immunotherapy and/or 
addition of posterior chemotherapy) or de-escalated strategies (e.g. PARPi monotherapy alone). Yet, this should 
be extensively tested in the future. For the present, it will be interesting to understand if the same model can be 
applied to different available therapies, for example to evaluate the opportunity to add carboplatin to standard 
anthracycline-taxane-based neoadjuvant chemotherapy, to avoid the cardiotoxic anthracyclines or even the evalu-
ate the addition of immune-checkpoint inhibitor pembrolizumab. A better correlation with clinical outcomes 
has to be further tested, as well.

Another limitation, is that  SUVmax detected by 18FDG-PET/CT is not the standard of care for assessing 
response to neoadjuvant therapy in BC. However, recent results of the PHERGain trial in early-stage HER2 + BC, 
showed that ~ 1/3 of patients with HER2 + BC treated with neoadjuvant trastuzumab and pertuzumab might be 
spared chemotherapy, thanks to the degree of metabolic response detected with FDG-PET/CT after just 2 cycles 
of the anti-HER2 combination and subsequent type of pathologic response detected after  surgery51. In this line, 
our study has to be intended as proof-of-concept analysis where our aim was to essentially prove that a PDEs 
reactive–diffusive mathematical model based on the assumption of Gompertzian growth could be applied not 
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only to a setting where tumor dimension/growth is directly considered, but also to demonstrate the capability to 
track tumor metabolism changes as detected by a standardized and objective measurement parameter (i.e. 18FDG-
PET  SUVmax) as a surrogate of malignancy and relate it to tumor response to treatment. In this perspective, we 
believe we succeeded in our intent, though replicating our findings in other independent but similar databases 
will be crucial. Finally, the software COMSOL Multiphysics is not open-access and a more user-friendly interface 
should be envisioned for a broader implementation outside a pure Engineer/Mathematic environment. Neverthe-
less, COMSOL’s computational robustness is already consolidated and the proposed mathematical model has the 
advantage of potentially being run at low cost on standard desktop computers, being also virtually adaptable to 
any proliferation/therapy scenarios, as also preliminarily observed in Lymphomas and a different BC  setting17,21.

To conclude, we observed that a mathematical framework based on realistic multidimensional governing 
PDEs, could be directly applied to the tailored simulation of an early therapeutic response to the PARPi olaparib 
in early-stage TNBC by using 18FDG-PET/CT scan, at the single patient level. The analytical and computational 
structure of the model sets the basis for further development in in-silico prognosis in Oncology, where the model 
has the potential to be tested in any virtual scenario on any possible patient, for any combination of the variable 
space in a sustainable way, to inform and support the Oncologists in their therapeutic decisions.

Prospective evaluation in independent cohorts and correlation of these outcomes with more recognized 
efficacy endpoints is now warranted.

Data availability
The datasets generated during and/or analyzed during the current study are available from the Corresponding 
Author upon reasonable request.
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